
Glish: A Software Bus for High-Level Control

Vern Paxson

Lawrence Berkeley Laboratory

One Cyclotron Road

Berkeley, CA 94720 USA

Abstract

Glish is a software system for building high-level control ap-

plications out of modular, event-oriented programs. Glish

provides these applications with a high degree of flexibility,

so they can adapt quickly to changing requirements. We de-

scribe the strengths of the “software bus” approach, how Glish

can direct and modify interprocess communication within a

distributed application, and how the system is currently used

for orbit-correction at the Advanced Light Source at LBL.

1 Introduction

We call an accelerator control application “high-level” if it

deals with the accelerator in terms of the underlying physics

rather than the underlying hardware. One key aspect of

such applications is that in general they do not require rapid

(� 1 msec.) real-time response times. Some examples are

correcting the orbit, controlling the chromaticity, and chang-

ing the tune. These applications have a number of character-

istics that can make writing them difficult:

1. The applications tend to be complex, requiring connect-

ing together disparate elements (user interface, physics

algorithm, data acquisition, data archiving, hardware

control;

2. The different components of an application might need

to run on different computers and communicate over a

network;

3. Often the applications must incorporate existing soft-

ware written by different people using differing conven-

tions;

4. An application might need to run in different “modes”,

such as on-line, off-line exploration of archived data, and

simulation;

5. An application might need to work with different accel-

erators (e.g., booster vs. storage ring);

6. The applications often play key roles in day-to-day ac-

celerator operations, making it vital that they remain re-

silient in the face of failures, and can be rapidly modified

to accommodate changes in operational procedures.

The Glish software system attempts to address each of these

issues. The fundamental idea behind Glish is to build such

applications by connecting together a set of modular, event-

oriented Unix programs. These programs are referred to as

clients. Glish provides a “software bus” for directing and

modifying the data exchanged between programs, as well as

facilities for creating and controlling processes across a net-

work of possibly heterogeneous computers. A key aspect of

Glish is that control of the “software bus” is done not via C

or C++ code, but using a high-level scripting language that

promotes rapid creation and modification of applications.

In the next section we discuss what we mean by “event-

oriented” programs and how using them ensures a high degree

of modularity. The next two sections present an overview of

the Glish scripting language used to connect together Glish

clients, and discuss the “under-the-hood” details of interpro-

cess communication, including performance measurements.

We then look at how clients use the Glish C++ Client library

to connect to the Glish system, and at how to integrate ex-

isting non-Glish programs into the system. We next discuss

how Glish deals with client failures and network outages, and

finish with an example of a large Glish application.

2 “Event-Oriented” Programs

A central concept in Glish is that of an event. An event is

an arbitrary, typed data value and an associated name. For

example, an event might be an array of floating-point numbers

along with the name BPM readings.

Every client used in a Glish application is written in an

“event-oriented” style. That is, clients are written in terms

of what events they expect to receive, and what events they

generate. For example, an FFT client might expect to receive

a do fft event whose value is an array of floating-point val-

ues, and it in turn generates an answer event whose value is

a record containing two fields, real and imag, each an array

1

giving the real and imaginary parts of the Fourier transform

of the original data.

A crucial point regarding event-oriented programs is that

they do not have any knowledge of where their events come

from, or where their events go to. As far as each individ-

ual Glish client is concerned, its incoming events arrive from

some black box, and it ships its outgoing events to another

black box. Glish does not provide any mechanism for clients

to know what other clients are being used in an application.

Thus, Glish’s event-oriented style assures the complete mod-

ularity of every client used in the system.

The natural question then arising is, How do you connect

together clients to form an application when you can’t code

into them knowledge of other clients? The answer is that such

connections are made using the Glish scripting language.

3 The Glish Scripting Language

The particulars of which clients are used to build a distributed

Glish application, what hosts they run on, and how they com-

municate their events with one another, are all controlled by

scripts written in the Glish language. This language is de-

scribed in greater detail in [1]; here we endeavor to convey

its general feel and power.

The Glish language is quite high-level and makes it easy

to create and manipulate client processes. For example, the

Glish statement:

bpms := client("read_BPMs")

creates a Glish client by running the Unix program

read BPMs on the local host. It then assigns to the vari-

able bpms a value corresponding to this client; the variable

can be subsequently used to refer to the client and to send

events to it and receive events from it. To create the client on

the remote host vme21, we could instead use:

bpms := client("read_BPMs", host="vme21")

The client() function is simply a predefined Glish func-

tion; the use of host= to specify the remote host is just

an instance of the general Glish “named argument” feature,

available to any function, whether built-in or written by the

user.

Once we have created a client, we can send it an event using

the send statement:

send bpms->do_read(crate=5, plane="X",

calib=[0.01, -0.5])

sends a do read event to the bpms client. The value of

the event is a record with three fields, crate (equal to the

integer 5), plane (equal to the string X), and calib (equal

to an array of two floating-point values).

Suppose that when it receives a do read event,

read BPMs reads the BPM values from the given crate, ap-

plies the given calibrations, and then generates a read done

event whose value is a floating-point array of the calibrated

BPM readings. We could print out the results in our Glish

script using:

whenever bpms->read_done do

print $value

When executed, the whenever statement indicates that any

time the bpms client generates a read done event, execute

the statement print $value. $value is a special Glish

expression meaning, “the value of the last event received”.

In general, a whenever statement can specify an arbi-

trary action in response to any event: the statement executed

can include function calls, sending out new events, creating

new clients, loops, or activating morewhenever statements.

One common action for a whenever statement is to send the

received event to another client. For example, suppose we

have a plotting program that we created using:

plot := client("plotter",

"-xaxis BPM number",

"-yaxis BPM reading")

and that this client updates its display whenever it is sent a

new plot event. Then we could maintain a display of the

current BPM readings using:

whenever bpms->read_done do

send plot->new_plot($value)

Now suppose that the plotting program requires two values

with its new plot event, one giving the X coordinates of the

points to plot, and the other giving the Y coordinates. This

interface is quite natural, but it doesn’t fit directly with our

read BPMs program, which only generates the BPM read-

ings, not also their numbers. Accommodating this difference

is no problem with Glish:

whenever bpms->read_done do

{

bpm_pos := 1:len($value)

send plot->new_plot(x=bpm_pos,

y=$value)

}

Here we have assigned to the variable bpm pos an array of

the integers from 1 to the number of elements in $value,

i.e., the number of BPM readings.

This example illustrates a crucial difference between Glish

and other systems (see [1] for references) for building dis-

tributed applications. In systems that only allow directly

connecting together different programs, we could not have

“plugged” together the read BPMs program and the plot-

ting program without modifying one or the other. With Glish,

2

however, we can glue together their different interfaces using

a single extra line in our scripting language. We do not have

to modify the programs themselves!

We can not only introduce new values when sending out

events, but also modify existing values. Suppose, for exam-

ple, that read BPMs gives the BPM readings in meters but

we want to display them in millimeters. We could use:

whenever bpms->read_done do

{

bpm_pos := 1:len($value)

send plot->new_plot(x=bpm_pos,

y=$value*1000)

}

Glish supports array arithmetic and mixed-type arithmetic.

Here, each element of the array $value is multiplied by the

floating-point value 1000.0 prior to creating the y field of

the new plot event sent to the plotter.

In general, Glish provides a powerful set of operators for

manipulating numeric array data. For example, here is a full

implementation of the “quick sort” sorting algorithm, written

only using Glish’s array-manipulation primitives:

func qsort(x)

{

if (len(x) == 0)

already sorted

return []

local below := x < x[1]

local above := x > x[1]

local same := x == x[1]

return [qsort(x[below]),

x[same], qsort(x[above])]

}

Here the local variables below, above, and same are

masks. That is, they are boolean arrays, each element of

which is “true” if the corresponding element of the argumentx

is greater than, less than, or equal to the first element of x, and

“false” otherwise. These masks are used to indexx to produce

only those elements of x satisfying the mask. The elements

less than and greater than x[1] are then recursively sorted

and the entire collection of now-sorted elements are put to-

gether into a single array by surrounding them with []’s, and

we are done sorting. Finally, because Glish is dynamically

typed, this function can be used unmodified to sort boolean,

integer, single-precision, double-precision, and string arrays.

In addition to the features described above, the Glish lan-

guage includes records with arbitrarily-typed fields, mecha-

nisms for request/reply events and for suspending script exe-

cution until a particular event arrives, direct connections be-

tween clients (see the next section), and ways to integrate

plain Unix commands (with no knowledge of Glish) into a

Glish script (see x 6).

Finally, the Glish interpreter can run scripts interactively,

allowing a user to type in arbitrary Glish commands to modify

the behavior of an active script. This facility provides a useful

debugging tool.

4 The Flow of Data in a Glish Applica-

tion

S
ocket

Glish script

Interpreter

Client Library

Application

Client

Pipes

Client Library

Application

Client

Client Library

Application

Client

Client Library

Application

Client

Pipes

Client Library

Application

Client Library

ApplicationClientClient

Socket (link)

Figure 1: Sample Glish Application Architecture

Glish scripts are run by the Glish interpreter, which con-

trols all process creation and communication specified by the

script. Figure 1 shows the details of how events flow through

a Glish application. First, the Glish script is given to the in-

terpreter, which executes the statements in it. In this example,

those statements direct the interpreter to create three clients,

two running on the same host and one running on a remote

host (shown below the thick dashed line). The interpreter

uses Unix pipes to communicate with the first two clients and

a TCP socket to communicate with the third. Each program

links in the Glish Client library (see x 5), which manages the

communication channel.

Events are sent over the sockets or pipes as typed, self-

describing binary data. If the two ends of the communication

channel support the same binary data formats, no conversion

needs to be made of the data; if they are heterogeneous, how-

ever, then the data are converted between architecture types,

transparent to the programs.

As indicated by the diagram, in general all communication

flows from clients to the interpreter and then perhaps from

3

the interpreter on to one or more other clients. This central-

ized design gives Glish its main power, that of being able to

use Glish’s high-level language to modify the data sent be-

tween programs without modifying the programs themselves.

It also, however, doubles communication costs in the com-

mon case of one client forwarding its events directly along to

another.

For most purposes, the centralized performance is ade-

quate: on a single unloaded Sparcstation 2, we measured a

client-to-client event rate of about 150 empty events/sec, and

about 100 events/sec when sending 8Kbyte events. When

running between the Sparcstation 2 and a Sun IPC on the same

Ethernet, we measured about 135 empty events/sec, and 37

8Kbyte events/sec.

For most high-level control applications, these rates are ac-

ceptable. In those cases requiring greater performance, Glish

supports establishing “point-to-point links” between clients.

Figure 1 shows such a link using a socket between the right-

hand and bottom clients. Such links remain transparent to all

but the Client library layer of the two clients. Point-to-point

links double the effective data rate, but at a cost of losing the

opportunity to modify the data sent between clients.

5 Writing Glish Clients

A program’s interface to the Glish system comes via linking

with the C++ “Client” library. This library exports two main

classes, Client, for managing the event connection to the

Glish interpreter (and to other clients), and Value, for encap-

sulating data values in order to send them over the software

bus. You create a Glish client by having your program instan-

tiate a Client object, passing it the arguments with which

the program was invoked:

int main(int argc, char** argv)

{

Client c(argc, argv);

...

You can then either simply enter a loop in which you repeat-

edly ask the Client object for the next event and dispatch

based on the event’s name, or you can ask it for a file descriptor

mask suitable for handing to the Unix select() function, which

allows your program to multiplex multiple event streams.

Events arrive with their values encapsulated in a single

Valueobject. TheValue class supports numerous methods

for accessing and manipulating its contents. You can also

in turn create Value objects encapsulating the scalar, array,

string, and record values used by your program. You send

eventsout into the Glish world using thePostEventmethod

of the Client object, passing it the name of the event and a

corresponding Value object.

Note that while the outermost event-loop of your program

must be written in C++, because C++ integrates well with C

(and, to a lesser degree, with Fortran), you are not confined

to writing your entire program in C++.

6 Integrating Existing Programs

One of the goals of Glish is to facilitate the use of existing,

non-Glish programs when creating a new Glish application.

Glish supports this goal in several ways. First, you can run

Unix shell commands from within a Glish script, sending

them arbitrary text via stdin, waiting for them to complete,

and capturing their stdout output in a string array. Next, you

can run the same sort of commands asynchronously, in which

case you send them stdin events to make text appear on

their stdin, and receive stdout events from them represent-

ing their output. Finally, often it is straight-forward to add a

C++ “event wrapper” around an existing program’s routines,

giving the program an event-oriented structure and encapsu-

lating the program’s key data structures in Value objects.

The orbit-correction application discussed in x 8 below used

this approach for its interface to the Teapot modeling program

(written in C) and the “clorb” orbit-correction algorithm (writ-

ten in Fortran).

7 Dealing With Failure

A key need of any control application is resilience in the pres-

ence of failure. Glish provides two event-based mechanisms

for detecting and responding to failure.

The first mechanism is that the Glish interpreter detects

whenever a Glish client terminates improperly. If a Glish

client exits without properly terminating its connection to the

Glish interpreter, the interpreter detects this fact (due to the

lost pipe or socket connection) and generates a fail event

on the process’ behalf. Thus,

whenever my_client->fail do

oops()

can be used to call the oops() function whenever

my client terminates abnormally.

The second mechanism involves detecting network out-

ages. The Glish interpreter periodically polls the daemons

running on its behalf on other network hosts. If it loses contact

with the daemon, the predefined system client generates a

connection lost event. If the connection returns, it gen-

erates a connection restored event, and if the daemon

crashes, a daemon terminated event. All of these events

may be used in whenever statements to execute whatever

(arbitrary) response is appropriate.

On a more general note, because clients do not depend

directly on one another for their communication channels,

the failure of one client does not tend to cascade and crash

other clients. Instead, clients that received events sent by the

4

failed client simply sit idle in their event loops (and continue

to process events sent to them by other clients). If the Glish

script is being run interactively, it may be possible to restart

the failed client or begin another in its place and continue.

8 An Example of a Glish Application

In this section we give an overview of how Glish is used for

correcting the beam orbit of the Advanced Light Source at

LBL. For more details, see [2].

While orbit-correction might sound like a fairly simple

application—all one does is get the trajectory, calculate the

corrector settings to alter it as desired, and apply those

changes—in reality it is quite a complex task. In partic-

ular, one must deal with broken, disabled, and untrustwor-

thy BPM’s; different hardware used to measure first-turn and

closed-orbit trajectories; different algorithms required to cor-

rect each of these; the need to sometimes average trajectory

readings over multiple turns; known or suspected offsets in

the BPM’s; varying calibration factors for converting between

amperes and milliradians of corrector kick; the need to apply

corrections in steps to avoid losing the beam or applying an er-

roneous correction due to hysteresis effects; sometimes using

nominal Twiss parameters while other times wanting to com-

pute them from beam measurements; and needing different

“goal” orbits for different correction procedures.

The resulting correction application uses seven different

Glish clients—ranging from a graphical user-interface to a

Fortran correction algorithm to data archiving to access-

ing the underlying hardware—and 40 different events. It ad-

dresses all of the problems discussed in the previous para-

graph, and in addition illustrates how Glish aids in overcom-

ing the difficulties of high-level control applications outlined

at the beginning of the paper. In particular, none of the con-

stituent clients is hideously large (the user-interface is the

largest, at around 3,000 lines of code); a number of preexist-

ing programs were used, written by different people and with

different physics conventions and units, some utilizing a sep-

arate, existing RPC library; the application runs on-line, in

simulation using a modeling program, or off-line on archived

data; the application works with both the ALS booster and

the storage ring, requiring only switching a configuration file

and changing the client used to access the underlying hard-

ware; and the application has proven quickly adaptable to un-

foreseen problems (for example, one night some of the BPM

readings were coming back as bogus values, �1030 mm.; this

problem was corrected for, without altering the BPM-reading

software, with a two-line fix in the Glish script).

9 Summary

The Glish software bus system has matured a great deal from

the prototype system described in [3]. It has now been used

for control applications at the Advanced Light Source at LBL,

and at the Magnet Test Laboratory at SSCL. A number of

other sites, both national laboratories and commercial in-

stitutes, have copies for experimentation purposes. Finally,

Brookhaven National Laboratory plans to incorporate Glish

into the control system for RHIC [4].

We feel Glish has proved quite successful at addressing the

challenges given in the introduction of this paper. Our expe-

rience at the ALS with using Glish in parallel with a separate

RPC facility suggests that Glish will readily work in conjunc-

tion with other control-system toolkits such as EPICS[5], let-

ting them take care of real-time concerns and itself providing

powerful “glue” for rapidly constructing high-level control

applications.

The current release of Glish is version 2.4. Source code

and full user documentation can be retrieved via anonymous

ftp to ftp.ee.lbl.gov, in the glish/ subdirectory. The

author can be reached via email to vern@ee.lbl.gov.

10 Acknowledgements

I would like to thank my colleagues at LBL, SSCL, and BNL

for their input and feedback on the design and use of Glish,

especially Chris Saltmarsh, Matt Fryer, Lindsay Schachinger,

Mike Allen, Joe Garbarini, and Dave Lambert.

This work was supported by the U.S. Department of Energy

under Contract No. DE-AC03-76SF00098.

References

[1] V. Paxson and C. Saltmarsh, Glish: A User-Level Soft-

ware Bus for Loosely-Coupled Distributed Systems, Pro-

ceedings of the 1993 Winter USENIX Conference, San

Diego, CA, January, 1993.

[2] L. Schachinger and V. Paxson, A Software System for

Modeling and Controlling Accelerator Physics Param-

eters at the Advanced Light Source, Proceedings of the

1993 IEEE Particle Accelerator Conference, Washington,

D.C.

[3] V. Paxson, C. Saltmarsh, M. Allen and M. Kane, A Lan-

guage, Server and C++ Class Library for Event Sequenc-

ing, Proceedings of ICALEPCS ’89, Nuclear Instruments

and Methods in Physics Research, A293, pp. 356-362,

1990.

[4] S. Peggs, C. Saltmarsh, T. Satogata, and M. Fryer, High

Level Controls at RHIC, submitted to ICALEPCS ’93.

[5] L.R. Dalesio, M.R. Kraimer, and A.J. Kozubal, EPICS

Architecture, Proceedings of ICALEPCS ’91, KEK Pro-

ceedings 92-15, p. 278, December, 1992.

5

